Strategic Environmental Assessment

for the Boegoebaai Port, Special economic Zone and Namakwa Region

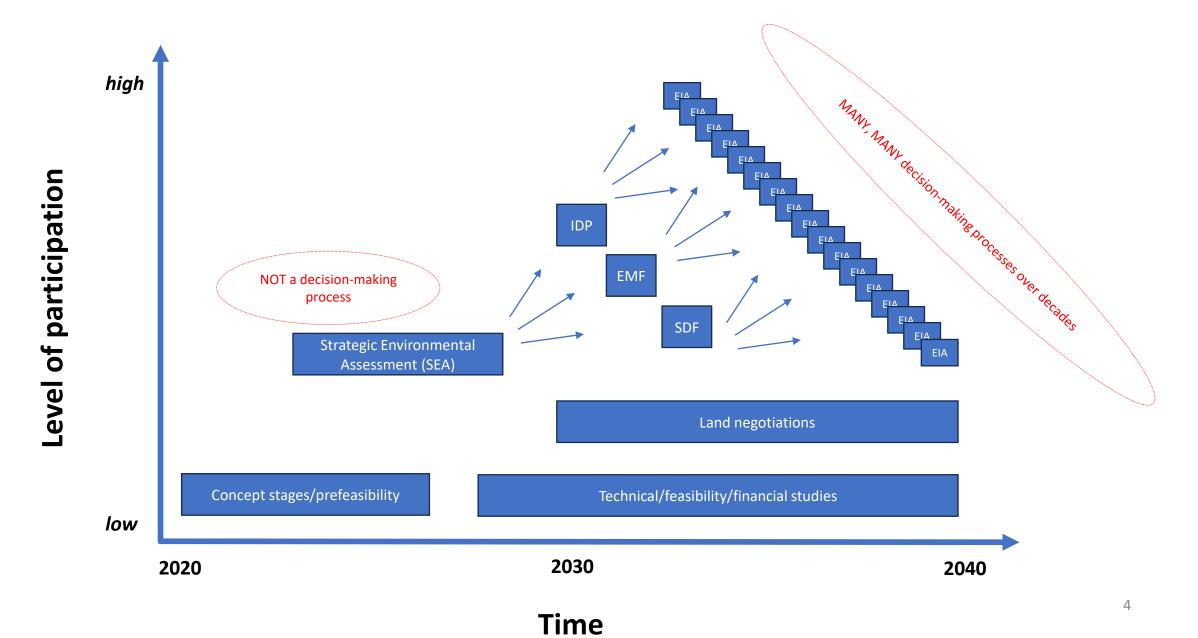
TRANSNER

Work Package Methodologies

24 April 2025 Microsoft Teams, 09:00 – 12:30

CSIR role in the Strategic Environmental Assessment (SEA)

- CSIR asked to lead this SEA based on 30-year track record
- Designers, facilitators & integrators of the SEA
- CSIR has no financial/ideological interest in the development
- Mandate in the interest of South Africa stakeholders
- This is NOT a public relations or rubber stamp exercise!
- Credible, transparent and objective assessment process

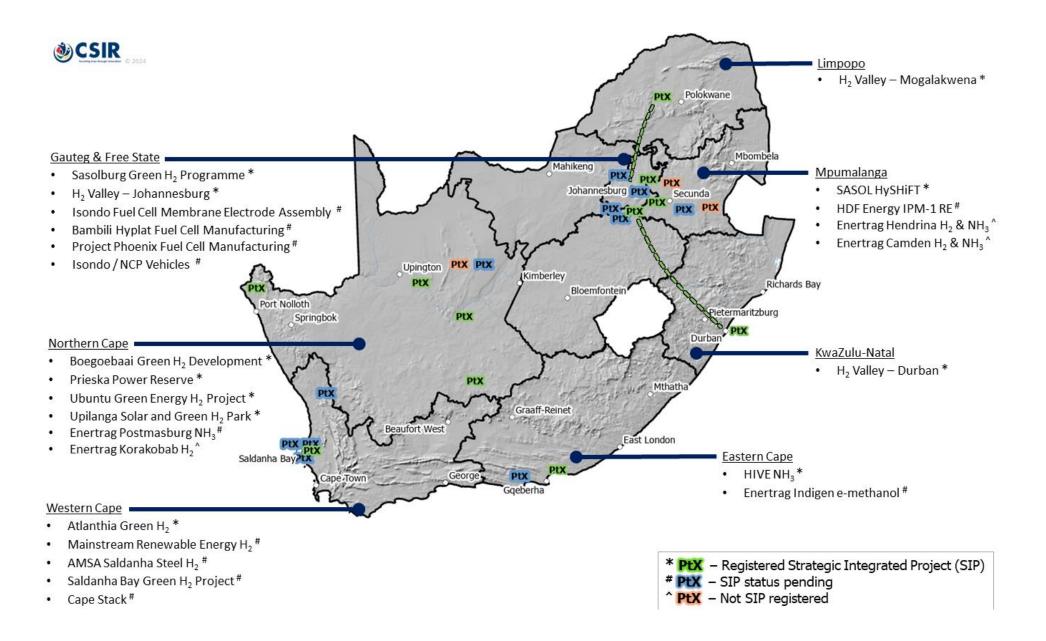

SEA vs EIA

SEA is NOT a decisionmaking process **SEA:** Unregulated knowledge-policy tool to guide sustainability planning at local, regional, national or international scale. Designed by the users.

EIA: Regulated knowledge-policy tool to guide specific (project scale) decision-making mandate, giving 'yes-no' answer, and if yes, under what conditions. Designed by regulators.

	EIA	SEA		
Who pays?	Private sector	Usually donors & govt		
Spatial scale	Project scale	Local, regional, national, inter		
Time horizon	Short-medium (1-5 years)	Medium to long (scenarios)		
Legislated	Yes, highly	No		
Decision-level	Project (yes/no mandate)	Programme (guidance)		
Cumulative impacts	No	Yes		
Methods	Rote	Innovative, case specific		
Participation	Standard PPP, town hall meetings	Coproduction, integrated governance		

Where does this SEA fit in decision-making/planning?


Need for the SEA

- 1. Political backing for development, consisting of:
 - i. A new breakwater port at Boegoebaai, dry and liquid bulk berths, and multi-purpose terminals
 - ii. A mixed-use Special Economic Zone (SEZ) located in the region adjacent to the proposed Boegoebaai port.
 - iii. An expansive regional renewable energy (wind and solar PV) generation and transmission infrastructure.
- 2. Substantial opportunity to decarbonize and diversify the South African energy economy, displace coal, generate new revenue, create jobs and skills
- 3. These are elegant, 'green', modern technologies but with large infrastructure footprints, occurring in a sparsely populated, but ecologically sensitive region.
- 4. Need for integrated, strategic planning and decision-making, conscious of cumulative impacts guide future planning (not doing away with any decision-making process!)

Need for integrated, strategic planning and decision-making

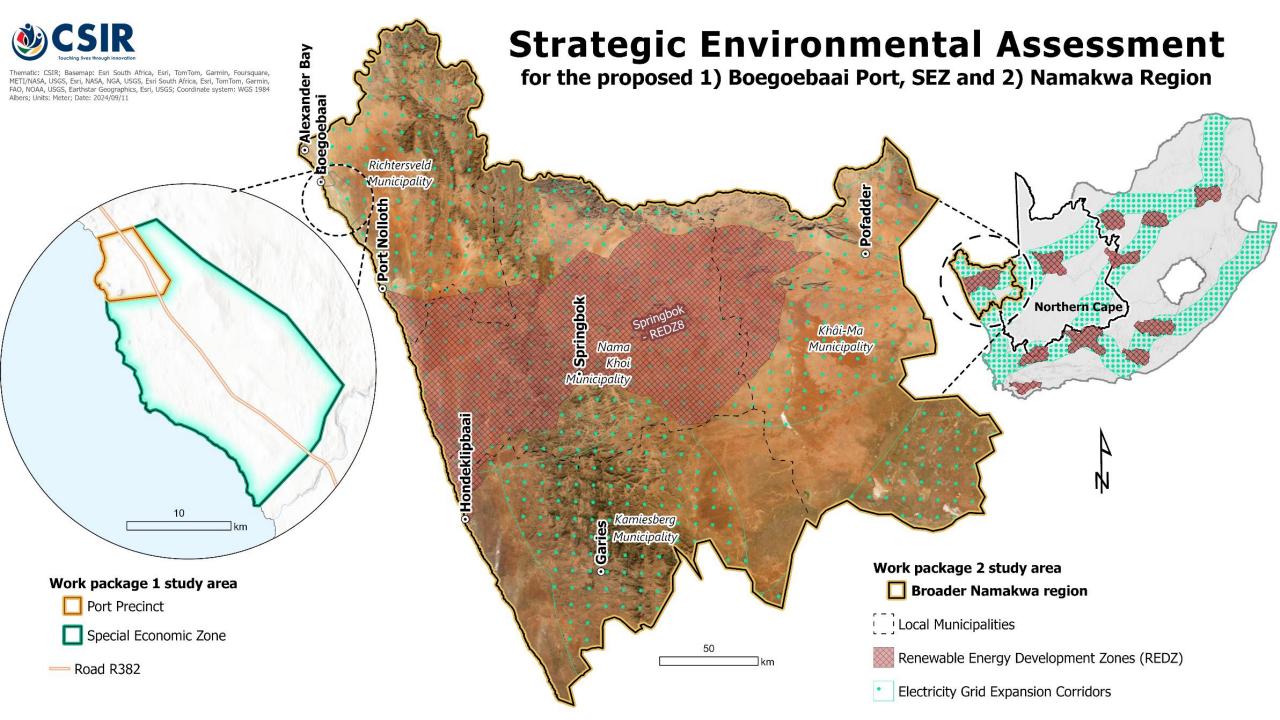
SEA mission and objectives

Mission: To develop an <u>integrated decision-making framework to guide</u> the planning of the proposed Boegoebaai port, Special Economic Zone, and wider Namakwa region in a sustainable manner.

Objectives:

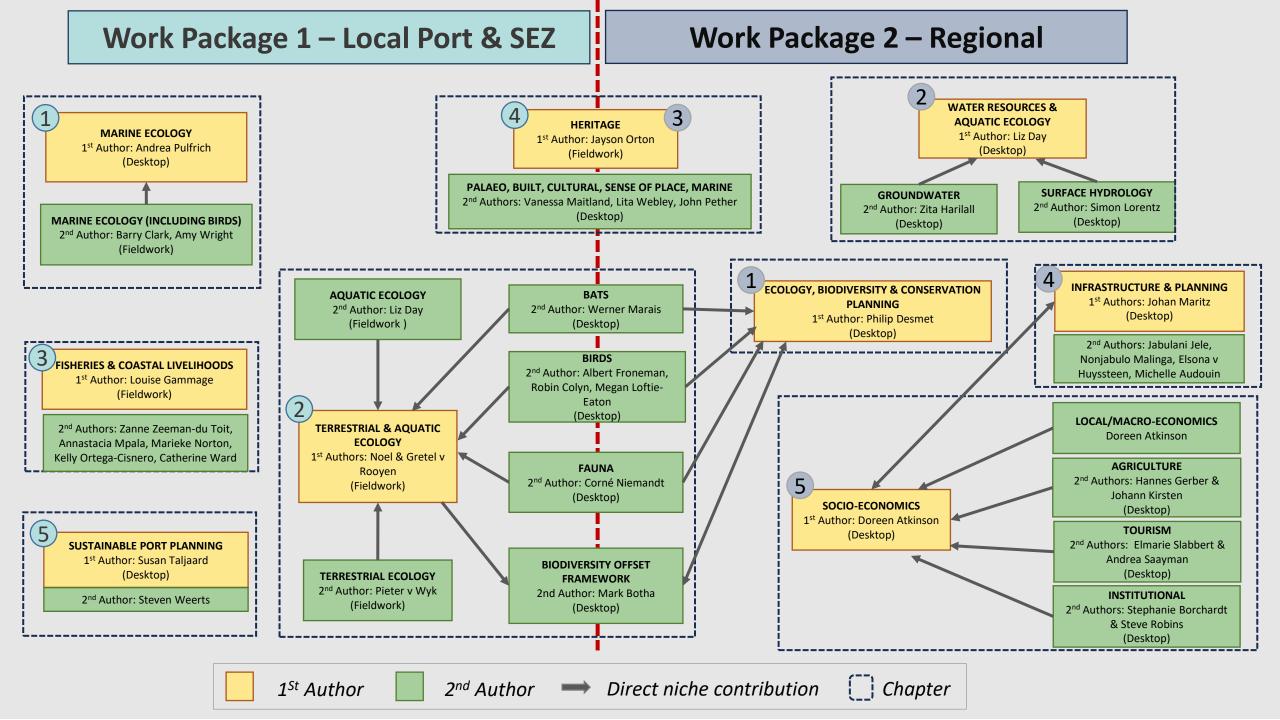
- 1. Assess the social and ecological sensitivity of local and regional receiving environments.
- 2. Classify spatial regions, based on multiple criteria, as being more, or less, suitable for future development.
- 3. Identify strategic-level constraints, opportunities, cumulative impacts, and management actions (mitigation/enhancement).
- 4. Provide an integrated decision-making framework and suite of tools, to guide project developers, practitioners, and policymakers.

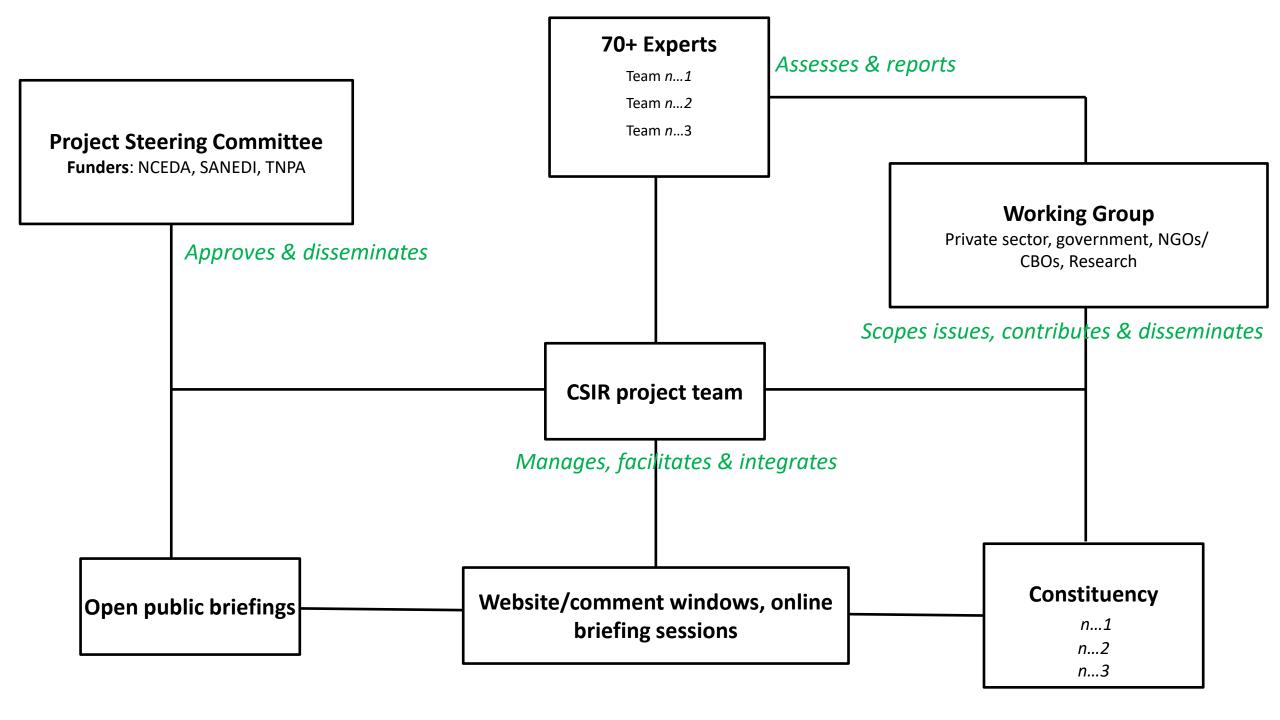
NOT a decision-making process


One SEA process, 2 x Work Packages

Work Package 1: A local-scale, spatially focused SEA report identifying sensitivities around the proposed port and SEZ development covering ~33 500 ha ("Boegoebaai Port and SEZ SEA"). Site visits, data verification, higher resolution, higher confidence.

Focus = Sensitivity of the local receiving environment, informing Port & SEZ layouts


Work Package 2: A regional-scale, desktop SEA report covering the main sustainability issues associated with an expansive Northern Cape green hydrogen economy ("Namakwa Region SEA"). Extent defined by Municipal boundaries and covers an area of ~5.8 million ha. Desktop, scenarios-based, more strategic, lower resolution.


Focus = Cumulative opportunities and risks across the broader Namakwa region

Specialist research teams

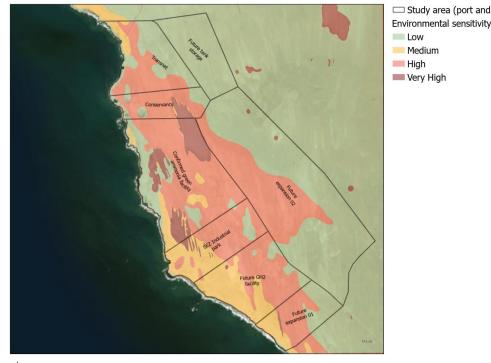
Specialist research teams				
Chapter	Lead author	Contributing authors	Nominated peer reviewers (tbd)	
Marine ecology & biodiversity (including coastal birds)	uding coastal birds) Andrea Pulfrich Barry Clark, Amy Wright			
Sustainable (green) port planning study	tudy Susan Taljaard Steven Weerts			
Fisheries & coastal livelihoods			Dr Nina Rivers & Dr Hilkka Ndjaula Prof Norbert Juergens	
Terrestrial ecology (including fauna 70+ exp	ert appoi	nted to produce	Conrad Geldenhuys & Nick	
Biodiversity offset framework SEA	content a	and findings	Jeffrey Manuel & Susie Brownlie	
Heritage				
Water / aquatic ecology (including			Dr Kevin Pietersen, Gary de Winnaar, Mark Graham & Russell Tate	
Socio-economics (including local/macro-economics, agriculture, tourism & institutional capacity)	Doreen Atkinson	Elmarie Slabbert, Andrea Saayman, Hannes Gerber, Johann Kirsten, Steve Robins, Stephanie Borchardt	Prof Lucius Botes, Prof Lochner Marais, Dr Igshaan Samuels	
Regional infrastructure & planning	Johan Maritz	Jabulani Jele, Nonjabulo Malinga, Elsona van Huyssteen, Michelle Audouin	Dr Antony Cooper & Prof Mark Oranje	

END

Survey of South African EAPs working in GH2 sector (Aug 2023)

Opportunities:

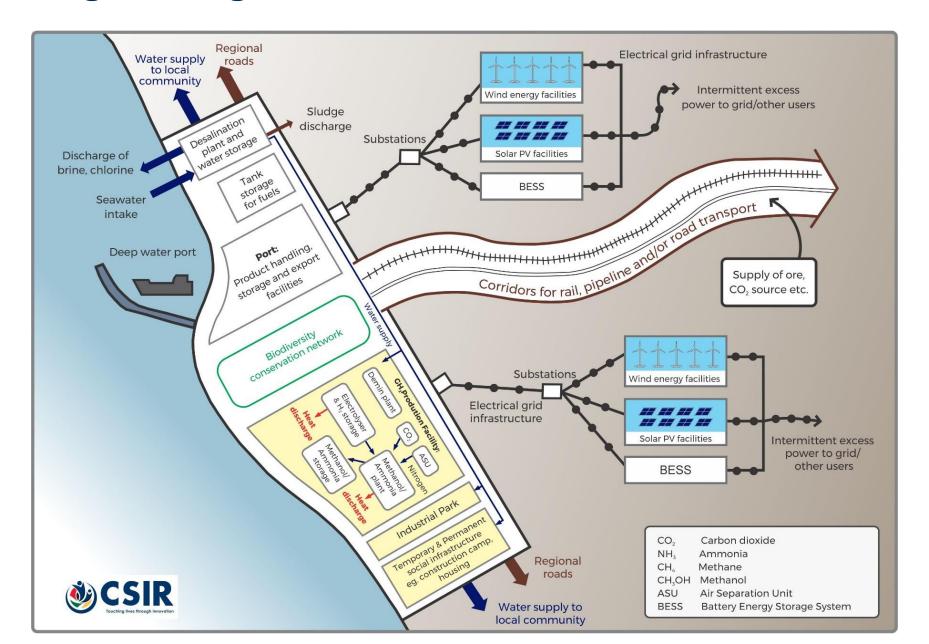
GHG reduction, new jobs, skills, new revenues & supply chains, energy sector modernization, coal displacement

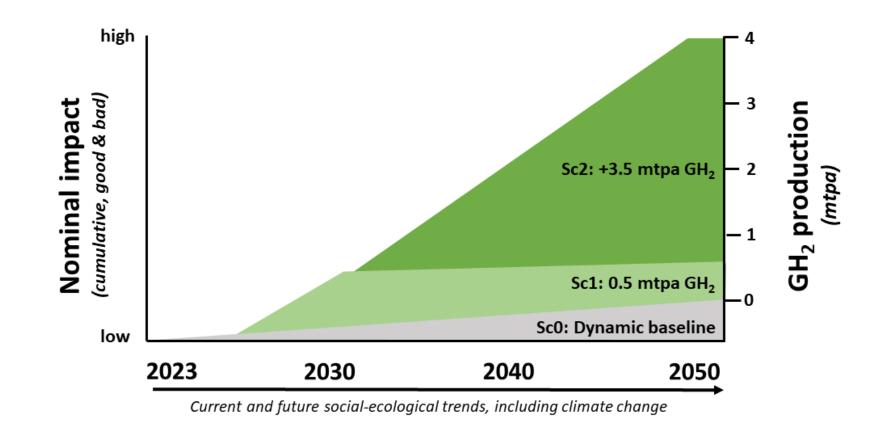

Concerns:

Biodiversity loss on land and at sea, landuse conflicts e.g., tourism, agriculture, conservation, burdens on small towns

Work Package 1: Port & SEZ

SEA reporting outputs

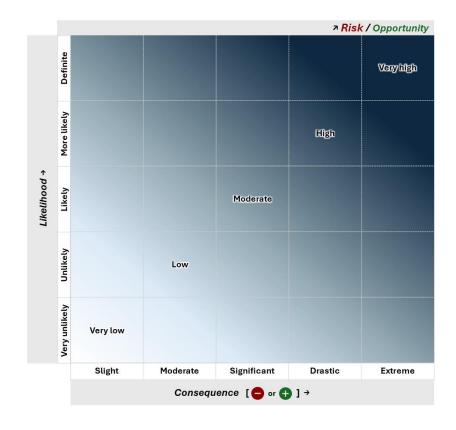

- 1. Executive Summary 2 pages with headline findings/iconic images/recommendations
- 2. Description of the receiving environment:
 - Social/ecological dynamics and change trends (baseline)
- 3. Sensitivity mapping (spatial classification e.g., tiered sensitivity map)
- 4. Aspects and Impacts register
 - Describe potential impacts associated with identified infrastructure/activity or SEZ subzone, citing main affected environment.
- 5. Recommended Strategic Management Actions:
 - i. To enhance positive impact & reduce negative impacts
 - ii. To guide future Port/SEZ planning and layouts
 - iii. To guide future site & project specific EIAs within study area


Port infrastructure aspect / SEZ subzone	Potential impact	Receiving environment of concern (spatially explicit)
Desalination plant located within the green	Brine discharge from desalination plant causing	50m radius from diffuser points
ammonia facility subzone	increased salinity and loss of species	located along marine outfall
Expansion of development into Future expansion area 01	Vegetation clearance causing loss of biodiversity and species	Areas mapped Very high sensitivity for intact Richtersveld Coastal Duneveld habitat, as in Error! Reference source not found. (example)

Work Package 2: Regional

Work Package 2: Scenarios/risk-based approach

Year	Electrolyser	RE capacity	Key components footprint	GH2 product
2030	2030 5 GW		~21 000 ha	0.5 mtpa
2050	40 GW 80 GW		~142 000 ha	4 mpta


Scenario quantifications

	Aspect	Unit	Sc1: Small GH ₂	Sc2: Big GH ₂	Assumptions	
	Electrolyser capacity	GW	5	40	Northern Cape Green Hydrogen Master Plan ambition	
	Electrolyser footprint	ha	75	600	15 ha per 1 GW	
	GH2 volume	mtpa	0,5	4,0	10 GW electrolyser = 1 mpta GH2	
	GH2 storage footprint	ha	250	2 000	10 ha per 20 000 tpa (500 ha for 1 mpta)	
	Ammonia volume	mtpa	2,8	22,7	1 mt H2 for 5,67 mt NH3 (1Mt of ammonia contains 176.5 kg (just 17.65%))	
l N	Ammonia footprint	ha	57	454	1 ha per 50 000 tpa NH3 (e.g. Enertrag Hendrina) (20 ha for 1 mtpa)	
SEZ	Ammonia storage footprint	ha	28	227	0,5 ha per 50 000 tpa NH3 (e.g. Enertrag Hendrina) (10 ha for 1 mpta)	
	Desalination output volume	Ml/day	36	286	25 kg water per 1 kg GH2 (considering electrolysis and cooling). 1Mtpa GH2 output required 25 Mtpa (=25000 MLpa) water / 350 operational.	
	Desalination footprint	ha	7	57	5 MI/day output needs 1 ha	
					Ratio of desalinated water to brine discharge water to be 42.5:57.5. (i.e 42.5% of intake sea water	
	Desalination discharge	Ml/day	48	387	is converted to desalinated water and 57.5% is discharged as brine).	
	Pipeline intake volume	Ml/day	84	672	Output + discharge	
	RE capacity total	GW	10	80	1 Mt/yr of H2 needs 10 GW electrolyser, that is powered by 20 GW	
	RE capacity - solar	GW	6	48	60 % solar: 40 % wind	
	RE footprint - solar	ha	12 000	96 000	0,5MW/ha	
	RE extent - solar		12 000	96 000	Footprint = extent	
	RE facilities - solar	no of facilities	6	48	Clusters of 1 GW facilities	
	RE capacity - wind	GW	4	32	60 % solar: 40 % wind	
	RE footprint - wind	ha	4 000	32 000	1 MW/ha	
_	RE extent - wind	ha	40 000	320 000	0,1 MW/ha	
REGION	RE facilities - wind	no of facilities	3	21	Clusters of 1,5 GW facilities	
EG	Road length	km	300	600	New roads and upgrades same distances / routes as pipelines	
~	Road footprint	ha	1 200	2 400	40 m (Rural class 2 road 40-70 m. TRH26 Road Classification and Access Management)	
	Rail length	km	550	550	Boegoebaai – Kenhardt. New rail direction south-east to connect to the existing Saldanha-Sishen route.	
	Rail footprint	ha	1 600	1 650	30 m for rail and service track	
	Pipeline length	km	300	600	Sc1: NAM <bb>SB (300km); Sc2: BB>Prieska (300km)</bb>	
	Pipeline footprint	ha	600	600	20 m servitude	
	Powerline length	km	260	1 387	Assume grid strengthening / shared infrastructure 30 km TX associated with each RE cluster.	
	Powerline footprint	ha	1 300	6 933	50 m servitude (TRH 27 South African Manual for Permitting Services in Road Reserves)	
	Main infrastructure components footprint	ha	21 082	142 240		
Unit	Units: GW = gigawatt; mtpa = million tonne per annum; ha = hectare; Ml/day = million litres per day; km = kilometre					

Work Package 2: Risk/opportunity assessment

SEA reporting outputs

- 1. Executive Summary 2 pages with headline findings/rec
- 2. Spatial classification of receiving environment across study area
- 3. Description of likely baseline receiving environment up to 2050
- 4. Description of potential impacts
- 5. Define/calibrate consequence terms
- 6. Describe best practices mitigation/enhancement
- 7. Assess the risk or opportunity of impacts
- 8. Recommended management actions

			With		nout management		With management		
Positive impact	Scenario	Spatial receiving environment / receptor	Consequence (+)	Likelihood	Opportunity	Consequence (+)	Likelihood	Opportunity	
,	S0: BASELINE		SLIGHT	LIKELY	VERY LOW	SLIGHT	LIKELY	VERY LOW	
•	S1: SMALL GH2	Port and SEZ	DRASTIC	LIKELY	HIGH	DRASTIC	NOT LIKELY	MODERATE	
_	S2: BIG GH2		EXTREME	VERY LIKELY	VERY HIGH	EXTREME	NOT LIKELY	MODERATE	
ation	S0: BASELINE		SLIGHT	LIKELY	VERY LOW	SLIGHT	LIKELY	VERY LOW	
l cres	S1: SMALL GH2	XX Municipality	SUBSTANTIAL	LIKELY	MODERATE	SUBSTANTIAL	NOT LIKELY	LOW	
skills	S2: BIG GH2		DRASTIC	VERY LIKELY	HIGH	DRASTIC	NOT LIKELY	MODERATE	
38	S0: BASELINE		SLIGHT	LIKELY	VERY LOW	SLIGHT	LIKELY	VERY LOW	
and	S1: SMALL GH2 S2: BIG GH2	XX municipality + XX municipality	SLIGHT	LIKELY	VERY LOW	SLIGHT	LIKELY	VERY LOW	
dol			MODERATE	VERY LIKELY	LOW	MODERATE	LIKELY	LOW	
	S0: BASELINE		SLIGHT	LIKELY	VERY LOW	SLIGHT	LIKELY	VERY LOW	
	S1: SMALL GH2	Northern Cape	SLIGHT	LIKELY	VERY LOW	SLIGHT	LIKELY	VERY LOW	
	S2: BIG GH2		SLIGHT	LIKELY	VERY LOW	SLIGHT	LIKELY	VERY LOW	

SEA vs EIA

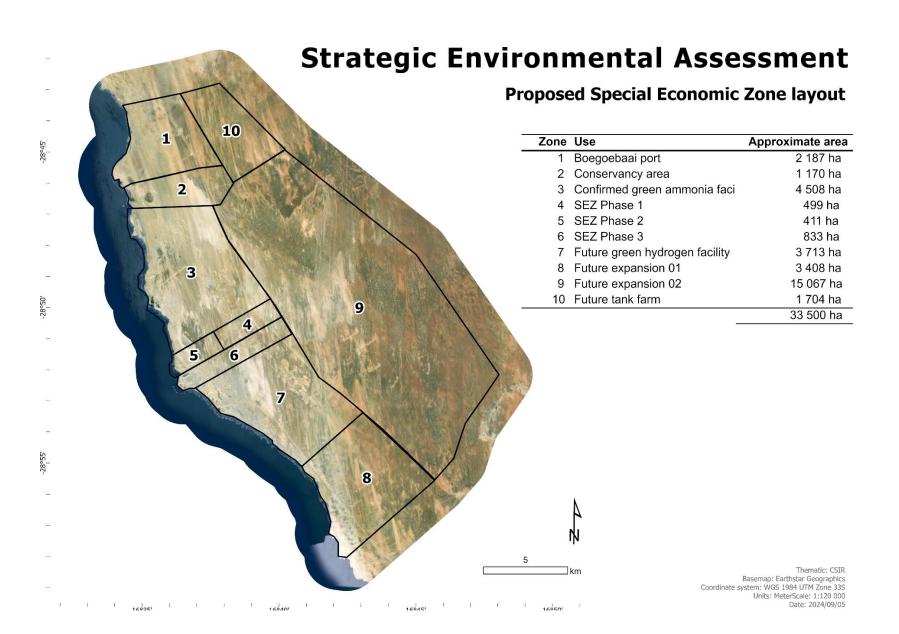
SEA: Unregulated knowledge-policy tool to guide sustainability planning at local, regional, national or international scale. Designed by the users.

EIA: Regulated knowledge-policy tool to guide specific (project scale) decision-making mandate, giving 'yes-no' answer, and if yes, under what conditions. Designed by regulators.

	EIA	SEA		
Who pays?	Private sector	Usually donors & govt		
Spatial scale	Project scale	Local, regional, national, inter		
Time horizon	Short-medium (1-5 years)	Medium to long (scenarios)		
Legislated	Yes, highly	No		
Decision-level	Project (yes/no mandate)	Programme (guidance)		
Cumulative impacts	No	Yes		
Methods	Rote	Innovative, case specific		
Participation	Standard PPP, town hall meetings	Coproduction, integrated governance		

SEA cont...

• Can be any number of different approaches, methods and processes, it all depends on the specific issues in the specific context


• SEA needs to be:

- i. Sustainability-focused
- ii. Interdisciplinary
- iii. Credible
- iv. Useful for decision-making
- v. Coproduced

SEA is NOT...

- A mega Environmental Impact Assessment (EIA).
- A public relations exercise.
- A rubber stamp.

Project aspects and SEA Work Packages

